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Hydrogen Selective Membranes in IGCC Plants
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Challenges under WGS conditions of IGCC plants

® high temperature and pressu
® presence of impurities (H,S)

re

Bracht et al., Energy Convers.Mgmt 38, S159-164 (1997)
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IGCC w/ WGS MR

..................................................................................

IGCC efficiency rermeste e
® without CO, capture: 46.7%
® with conventional CO, removal: 40.5%

With WGS MR and CO, recovery: 42.8% based on
® 35 atm feed, 20 atm permeate (15 atm pressure drop)
® 330°C in the feed
® hydrogen/carbon dioxide selectivity = 15
® hydrogen permeability = 0.2 mol/(mZ2.s.bar)
Membrane Area Needed: 2,200 m? (400MW)

Bracht et al., Energy Convers.Mgmt 38, S159-164 (1997)
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Motivation: Hierarchical Manufacturing of Zeolite Films

For a Review:
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Layer by Layer Deposition @acs 132(2), 448-449 (2010))

5 layers of MCM-22/surfactant-templated-mesoporous-silica

on porous alumina
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Comparison of Ideal Selectivity
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The ideal selectivity (H,/CO, and H,/N,) increased monotonically with
temperature and improved with the number of deposition cycles.
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MCM-22/Silica Membranes for Hydrogen Separations
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Choi J. and Tsapatsis M. Journal of the American Chemical Society

132(2), 448-449 (2010)

Experimental Demonstration of Selective Flake Composite Concept

Z2%N, UNIVERSITY OF MINNESOTA

Chemical Engineering & Materials Science

7



Advantages by Reduction in Flake Thickness

H, N,
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Increase selectivity without Increase throughput without
decreasing throughput decreasing selectivity
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Membrane Preparation Procedure

Swelling

Exfoliated Layers

Purified nanosheets in toluene were filtered through porous
alumina supports and then secondary growth was conducted.
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Exfoliated ITQ-1 on Alumina Disk After Secondary Growth of ITQ-1
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Performance of ITQ-1 Membrane
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Summary of Experimental Achievement & Future Work

® Achievement

® prepared hydrogen permselective ITQ-1 membranes using exfoliated
MWW structure

® Future Work
® working towards meeting proposed target for H,/CO, selectivity

® developing ITQ-1 membranes on tubular supports and investigating
their performance at higher temperatures
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Hydrothermal Treatment Conditions

o Temperature: 350°C

o Pressure: 10 bar (95% steam, 5% nitrogen)

o Samples were analyzed in 21 days intervals
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Hydrothermal Stability Setup
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Hydrothermal Stability (~95% steam in nitrogen) at 350°C,10 bar
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Summary of Stability Analysis & Future Work

® Achievement

® developed material showing high hydrothermal stability

® Future Work

® performing hydrothermal stability studies on other layered zeolites

Z44, UNIVERSITY OF MINNESOTA Chemical Engineering & Materials Science 16



Membrane Reactor Modeling: Objectives and Approach

® Develop a WGS membrane reactor (MR) model

® perform simulation and optimization studies

® analyze the effect of reactor design on performance

® integrate model in IGCC unit

Determine the membrane characteristics necessary to
® achieve DOE R&D target goal of 90% CO, capture 1)

® obtain desired H, recovery value of 95% @

Satisfy transportation safety constraints of CO, capture stream (1)

® Jow CO concentration obtained by reaching desired CO conversion value of 98%

® H, molar fraction below flammability limit of 2%

® Minimize membrane cost as a function of surface area required

® Received input from DOE/NETL personnel (Drs. John Marano and Jared Ciferno)

(1) Marano, Report to DOE/NETL (2010)
(2) Marano and Ciferno, Energy Procedia 1, 361-368 (2009)

,/Eﬁuq}'\, UNIVERSITY OF MINNESOTA Chemical Engineering & Materials Science 17



MR Modeling Assumptions and Simulation Set Up

Composition @: AH, An,

CO =24.43 %

H,O =48.86 % feed . retentate

C02 = 568 % CO+H20 - COQ"'HQ

H,=19.33 %

sweep i o, i o, permeate
® Assumptions ~permeate “Swesp
® 1-dimensional shell and tube reactor o Flow configurations
® catalyst packed in the tube side ¢ co-current
® thin membrane layer placed on surface of tube wall & counter-current
® sweep gas flows in the shell side o Simulation conditions from literature
® plug-flow operation for both shell and tube & catalyst type and reaction rate @
® constant temperature and pressure & reactor dimensions ®
° i L : :
steady-state operation & conditions consistent with IGCC

. specifications
® ideal gas law P

(1) Marano, Report to DOE/NETL (2010) o Developed model validated using

(2) Choi and Stenger, J. Power Sources 124, 432-439 (2003) published simulation data ©
(3) Amelio et al., Energy Convers. Mgmt 48, 2680-2693 (2007)
(4) Boutikos and Nikolakis, J. Membr. Sci. 350, 378-386 (2010)
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Counter-current Simulation Results: Concentration Profiles
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Simulation conditions

L 4

MR length of 30 cm
Quo = 0.1 mol/(s.m?.atm)
Shzan = 1000

steam as sweep gas
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Counter-current Simulation Results: Changing Membrane Selectivity

THz THz
— % > CO+H,0 == COp#H, - »
permeate i i sweep
Membrane Reactor Value [%)] Value [%)] Value [%)] Target
Parameter (St = 1000) | (St =100) | (Sppr=10) | [%]
o= S Sommertec 99.84 99.34 95.02 08
s T fees 99.06 99.00 97.21 95
e 98.97 90.15 29.07 90
P =0 _Tnclentale 96.31 96.62 98.30 95
T 44.27 43.14 34.05 44
Ho™ Tkl coremions 0.66 0.51 0.01 ()2
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Membrane Reactor Optimization: Problem Formulation

o Typical WGS reactor design alternatives (1.

& pre-shift, membrane separator, WGS reactor Parameter Price [$]
¢ pre-shift, WGS membrane reactor zeolite 1,000 -
membrane 10,000/m?2
¢ WGS reactor, membrane separator
H, fuel 1.78/kg
¢ stand-alone WGS membrane reactor
o Address all alternatives in one formulation
0 l; ls L
o Optimization problem statement © L L,
min [cos’rm— credi’er]
Wil g dy ds eee 0! oo e e
) o : oo 0! e e 00
s.t.: target specifications and constraints feed e oeoel oo ee retentate »
- , e e o ieoee
in which ee e 0 iee e e
= ? ' 1 ' t
costy =1 A, L Y EENNNNNNY AN TS
credit, =f R, L L e tm
(1) Marano and Ciferno, Energy Procedia 1, 361-368 (2009) 0k l 5 L

(2) Bracht et al., Energy Convers. Mgmt 38, S159-164 (1997)
(3) Lima et al., In preparation (2011)
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Membrane Reactor Optimization: Results

o Benchmark for study: improve successful counter-current case
o Problem initial guess: MR configuration

o Solution for 1 year operating cycle 1,=28.9
1,=27.1
® 90 & 0 00000 00 00 B
o 90 0 000 %09 00 R P R0
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o Length of membrane layer: L, + L., =22.7 cm
o Solution indicates
¢ optimal design: short pre-shift reactor followed by long MR
¢ potential savings in membrane material (= 25%)
¢ large-scale ® (A, =2000 m?) = savings as high as $5,000,000

(1) Bracht et al., Energy Convers. Mgmt 38, S159-164 (1997)
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Modeling Conclusions & Future Work

® Conclusions

® MR model developed for simulation and optimization studies

® simulation results indicated successful counter-current cases

® optimization formulation guided selection of optimal reactor design for WGS reaction

® Future Work

® perform preliminary cost analysis using MR model

® develop IGCC system model

® first step: Matlab model of separate units (gasifier, ASU, turbines, and heat

exchangers)
simplified gasifier model developed assuming Conoco-Phillips design @

integrate units (including MR) in IGCC plant (Matlab and Aspen simulations)

(1) Jillson et al., J. Proc. Cont. 19, 1470-1485 (2009)
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